

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-510132
(P2004-510132A)

(43) 公表日 平成16年4月2日(2004.4.2)

(51) Int.Cl.⁷

G01N 21/17

F 1

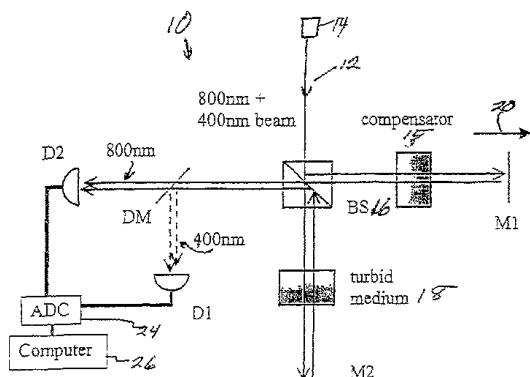
G01N 21/17 630

テーマコード(参考)

2 G059

審査請求 未請求 予備審査請求 有 (全 47 頁)

(21) 出願番号 特願2002-502414 (P2002-502414)
 (86) (22) 出願日 平成13年6月8日 (2001.6.8)
 (85) 翻訳文提出日 平成14年11月27日 (2002.11.27)
 (86) 國際出願番号 PCT/US2001/018721
 (87) 國際公開番号 WO2001/094913
 (87) 國際公開日 平成13年12月13日 (2001.12.13)
 (31) 優先権主張番号 09/591,297
 (32) 優先日 平成12年6月9日 (2000.6.9)
 (33) 優先権主張国 米国(US)


(71) 出願人 591275056
 マサチュセッツ・インスチチュート・オブ
 テクノロジイ
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 アメリカ合衆国マサチュセッツ州0213
 9・ケンブリッジ・マサチュセッツアベニ
 ュー77
 (74) 代理人 100060782
 弁理士 小田島 平吉
 ヤング, シヤングエイ
 (72) 発明者 アメリカ合衆国マサチュセッツ州0213
 9ケンブリッジ・ナンバー1・コロンブス
 ストリート136

最終頁に続く

(54) 【発明の名称】位相分散式トモグラフィー

(57) 【要約】

混濁媒体を通して屈折されずに伝播する放射はその波動性のために少し位相速度変化を受ける。この変化は差動位相光学干渉計 (differential phase optical interferometer) を使用して測定出来る。弾道伝播 (Ballistic propagation) は3つの状況 (regimes) に分類出来て、すなわち波長に比して小さい散乱体用で該混濁媒体がバルク媒体として作用する状況と、大きい散乱体用で位相速度が混濁から独立している状況と、そして中間の状況で該位相速度が散乱体半径に強く左右される状況と、である。特に、中間の寸法を有する散乱体用では、より高い屈折率の正の分散散乱体 (positive dispersion scatterers) を追加することにより位相速度は増加しそして負の分散 (negative dispersion) が観察される。これらの測定は基本波と調波の光との間の位相差を使って行われ、組織又は生物学的流体の診断情報と画像を提供するため使用出来る。

【特許請求の範囲】**【請求項 1】**

媒体を光学的に測定するデバイスにおいて、
光の第1波長と第2波長とを、該第2波長が該第1波長と調波的に関連するように、提供する光源と、
該第1波長と該第2波長との光を第1光路と第2光路の両者に沿うよう結合させる光学システムとを具備しており、該第1光路は測定されるべき媒体上へ延びてあり、該第2光路は光路長の変化を受けており、そして該デバイスは又
該媒体と相互作用する光の位相変化を測定するために該媒体からの光と該第2光路からの光とを検出する検出器を具備することを特徴とする該デバイス。

10

【請求項 2】

該媒体が生物学的組織を含むことを特徴とする請求項1の該デバイス。

【請求項 3】

更に、該媒体内の粒子の寸法を決定するデータプロセサーを具備することを特徴とする請求項1の該デバイス。

【請求項 4】

更に、検出され散乱された光で該媒体の画像を形成するデータプロセサーを具備することを特徴とする請求項1の該デバイス。

20

【請求項 5】

更に、該媒体と相互作用する光の位相速度変化を決定するデータプロセサーを具備することを特徴とする請求項1の該デバイス。

【請求項 6】

該光源が可視及び近赤外線領域の光を放射することを特徴とする請求項1の該デバイス。

【請求項 7】

更に、第1の低コヒーレンス光源と第2の低コヒーレンス光源とを提供する過程を具備することを特徴とする請求項1の該デバイス。

【請求項 8】

更に、低コヒーレンス光源とコヒーレント光源とを提供する過程を具備することを特徴とする請求項1の該デバイス。

30

【請求項 9】

該第2波長が該第1波長の整数倍の5%内にあることを特徴とする請求項1の該デバイス。

【請求項 10】

更に、該光源から該媒体まで光と結合する光ファイバーデバイスを具備することを特徴とする請求項1の該デバイス。

【請求項 11】

更に、該媒体から該検出器まで光と結合する光ファイバーデバイスを具備することを特徴とする請求項1の該デバイス。

【請求項 12】

該検出器が第1光検出器と第2光検出器とを備えることを特徴とする請求項1の該デバイス。

40

【請求項 13】

更に、補償器を具備することを特徴とする請求項1の該デバイス。

【請求項 14】

更に、該第1光路上で光を反射させる第1走査用ミラーと該第2光路上で光を反射させる第2ミラーとを具備することを特徴とする請求項1の該デバイス。

【請求項 15】

更に、ビームスプリッターと複数のレンズとを具備することを特徴とする請求項1の該デバイス。

【請求項 16】

50

更に、該検出器に接続された A - D 変換器を具備することを特徴とする請求項 1 の該デバイス。

【請求項 17】

更に、ヘテロダイン検出システムを具備することを特徴とする請求項 1 の該デバイス。

【請求項 18】

更に、光ファイバープローブと内視鏡とを具備することを特徴とする請求項 1 の該デバイス。

【請求項 19】

該光源が連続波レーザーを備えることを特徴とする請求項 1 の該デバイス。

【請求項 20】

媒体を光学的に測定する方法において、

第 1 波長と第 2 波長の光を、該第 2 波長が該第 1 波長に調波的に関連するように提供する過程と、

第 1 光路と第 2 光路との両者に沿うよう該第 1 波長及び該第 2 波長の光を導く過程とを具備しており、該第 1 光路は測定されるべき媒体上に延びており、該第 2 光路は光路長の変化を受けており、そして該方法は又、

該媒体と相互作用する光の位相変化を測定するために該媒体からの光と該第 2 光路からの光とを検出する過程を具備することを特徴とする該方法。

【請求項 21】

該媒体が光散乱媒体を含むことを特徴とする請求項 20 の該方法。

【請求項 22】

更に、該媒体内の粒子の寸法を決定する過程を具備することを特徴とする請求項 20 の該方法。

【請求項 23】

更に、該検出され散乱された光で該媒体の画像を形成する過程を具備することを特徴とする請求項 20 の該方法。

【請求項 24】

更に、該媒体と相互作用する光の位相速度変化を測定する過程を具備することを特徴とする請求項 20 の該方法。

【請求項 25】

更に、該第 1 波長及び調波的に関係する第 2 波長を放射する光源を提供する過程を具備することを特徴とする請求項 20 の該方法。

【請求項 26】

更に、第 1 の低コヒーレンス光源と第 2 の低コヒーレンス光源とを提供する過程を具備することを特徴とする請求項 20 の該方法。

【請求項 27】

更に、低コヒーレンス光源とコヒーレント光源とを提供する過程を具備することを特徴とする請求項 20 の該方法。

【請求項 28】

該第 2 波長が該第 1 波長の整数倍の 5 % 内にあることを特徴とする請求項 20 の該方法。 40

【発明の詳細な説明】

【0001】

[関連出願]

これは 2000 年 6 月 9 日出願で、該出願の全開示がその全体の引用によりここに組み入れられる米国出願第 09/591,297 号の 1 部継続出願である。

【0002】

[政府援助]

本発明は米国国立衛生研究所からグラント (Grant) 番号 P 41 - R R 02594、1 F 32 R R 05075 - 01 及び 1 F 32 C A 80345 - 01 によりそして全米科学財団のグラント番号 9708265 C H E により、全体に亘り又は部分的に補助された。

50

政府は本発明の或る権利を有する。

【0003】

[発明の背景]

弾道光 (Ballistic light) は入射光と同じ方向に散乱媒体 (scattering medium) を横断する光として規定される。従来、弾道伝播 (ballistic propagation) は透過時屈折されない光子として描かれた。この様な絵は、以下で光子モデル (photonic model) と呼ばれるが、光学的トモグラフィ (optical tomography) で広く使用され、それは弾道伝播の多くの特性を説明する。例えば、該光子モデルは弾性光 (ballistic light) の散乱光 (scattered light) より早い時期の厚い混濁した媒体 (thick turbid medium) からの出現を説明する。しかしながら、このモデルは、光の波動性が考慮されてないので、不完全である。

【0004】

干渉計 (interferometers) は光路長の変動に基づく位相変化を測定するため使用されて来た。例えば、干渉顕微鏡を使用した位相測定は薄い組織サンプルの2次元画像を提供するために以前使用された。

【0005】

しかしながら、組織の様な混濁媒体を測定するためにはシステムと方法の改良に対する引き続いたニーズが存在する。

【0006】

[発明の概要]

拡散散乱媒体 (diffuse scattering medium) を横断する光の位相速度 (phase velocity) は散乱体 (scatterer) 寸法の関数である。この効果を光学的に測定するために、例えば、800及び400nmの様な少なくとも2つの調波的に関係付けられた波長 (at least two harmonically related wavelengths) 間の位相速度の非常に小さい差を測定する干渉計が使用される。かくしてもう1つの波長の整数倍である1つの波長が関心のある走査領域に関する定量的位相情報を提供するため使用され得る。この様な波長の対は、調波的に、すなわち最低波長の5%内へ整数倍の要求を満足させる、すなわち1つの波長がもう1つの波長の約整数倍である、2つの別々な光源を使用して、発生され得る。好ましい実施例では、本発明の干渉計システムは2cmの厚さの混濁サンプルで少なくとも40m/sの位相速度差、すなわち、例えば、等価的に、約5nmの光路長差、に感応する (sensitive)。この感度は非常に希釈された混濁媒体の測定、生物医学的画像形成の様な光学的応用により関係深いモデルそしてスモーク (smoke) 又はフォグ (fog) の様な大気条件を通した遠隔探査 (remote sensing) を提供する。

【0007】

位相速度の変動は弾道伝播の波動性から生じ、弾道電磁場 (ballistic electromagnetic field) を、該入力光場の散乱場 (scattered field) との干渉として扱うことにより測定出来る。バンデフルスト (van de Hulst) 及びミー (Mie) の散乱理論 (scattering theories) を使うと、弾道伝播は3つの状況 (regimes) に分けられ、すなわち、(1) 散乱体寸法 (a) が光学的波長 (λ) より遙かに小さい時、該混濁媒体は位相速度の考察用にはバルク媒体 (bulk medium) として近似されてもよい状況と、(2) a が

に比肩出来る時、該位相速度は散乱体寸法に強く左右される状況と、(3) a が より遙かに大きい時、位相速度考察用には混濁度 (turbidity) は無視出来る状況とある。結果として、適当に調波的に関係付けられた光の波長で組織を測定することにより、該組織内の細胞構造体の寸法と分布が測定出来る。

【0008】

弾道光は混濁媒体の構成材料に特徴付けられない位相速度で伝播出来る。従って、該弾道

10

20

30

40

50

光自身が混濁媒体の構造と組成に関する位相情報を担わねばならない。光子モデルは位相速度のこの変動を簡単に説明出来ない。

【0009】

本発明の好ましい実施例はここでは位相分散顕微鏡検査 (phase dispersion microscopy) {ピーデーエム (PDM)}と呼ばれる顕微鏡画像形成システム (microscopy imaging system) に関する。このシステムは媒体を通して透過される光の基本波と散乱されない光の調波との間の位相差を測定することに基づく。ピーデーエムは光路長変動によるノイズを実質的に減じるか又は除去する干渉計を使用する。他の位相測定技術では、該測定される位相での微細な干渉計光路長差を考慮することは難しい。かくして、この様なジッター (jitter) を除去する独立の方法無しでは、位相測定が物理的に関連する情報を直接生み出すことは出来ない。対照的に、本システムで測定された位相は光路長誤差から独立している。例として、該システムは、混濁した媒体を通した伝播中に弾道光により経験される非常に小さい不規則な位相速度差を測定するため使用される。本システムと方法はDNA水溶液の様な非常に希釈した材料の屈折率分散を測定することにより定量的情報を提供出来る。該技術の感度とその画像形成能力は支持されない組織断面 (unsustained tissue section) の画像形成に応用出来る。

10

【0010】

この技術は生体外及び生体内両方で組織の2次元 {2デー (2D)} 又は3次元 {3デー (3D)} 画像形成を提供するため使用出来る。本発明のシステムと方法に関する追加的詳細は引用によりここに組み入れられる 2000年4月28日出願の出願番号第60/200、187号で見出される。

20

【0011】

[発明の詳細な記述]

測定は図1に示す低コヒーレンス (low-coherence) 位相分散干渉計 (phase dispersion interferometer) 10を使用して行われる。入力光12は基本波及び好ましくは第2調波周波数のレーザー光ビームを重畳 (superposing) することにより創られる。源 (source) 14は800nmで150fsパルスを作る低コヒーレンスのチタン：サファイアレーザー (Ti:sapphire laser) とすることが出来て、該第2調波は標準的周波数ダブラーにより作られる。重畠されたビームはビームスプリッター16で2つの成分に分割される。1つの成分はミラーM2を有する干渉計の信号アームの混濁媒体18を通る2つのパス (passes) を作る。もう1つの成分は水の補償器キュベット (compensator cuvette) 15を通過し基準アーム (reference arm) 内の基準ミラー (reference mirror) M1から反射する。該基準ミラーM1は一定速度20で移動し、該戻りビームにドップラーシフトを誘起する。次いで該再組合せされたビームはダイクロイックミラーDMを用いて波長により分離され、光検出器D1とD2により別々に測定される。両波長での最終ヘテロダイン信号 (heterodyne signals) が測定され、16ビット100kHz A-D変換器24によりデジタル化され、更にデータプロセサー26で処理されてメモリー内に記憶される。各デジタル化された信号は該ドップラーシフトにより与えられた、その中央ヘテロダイン周波数付近でバンドパスされる。該フィルターされた信号は次いでヒルベルト変換 (Hilbert transform) され、そしてそれぞれの位相 ϕ_1 (基本波) と ϕ_2 (第2調波) が抽出される。関連した位相技術は金属の分散及び空気の屈折率を測定するために使用されて来た。

30

【0012】

従来の干渉計では、波長の僅かな分数程小さい光路長変動が測定された位相を顕著に変え、従って、この様なジッター (jitter) を除く独立した方法無しには、位相測定が物理的に関連する情報を直接生じることは出来ない。しかしながら、我々の干渉計の該信号及び基準アームの何れかでの大きさ $D \times$ のジッターは該位相、 ϕ_1 及び ϕ_2 をそれぞれ

40

50

k_1 及び k_2 \times 及び k_2 \times だけ変え、ここで k_1 及び k_2 は基本波及び第2調波光ビームの自由空間波数 (free space wavenumbers) である。 k_2 は丁度 k_1 の2倍なので、ジッターの影響は k_2 から k_1 の2倍を引くことにより全部を除去出来る。この様な除去が1つの波長がもう1つの整数倍である時だけ可能であることを注意すべきである。この操作は高感度で、

【0013】

【数1】

$$\Delta L_{k_2, k_1}$$

10

【0014】

すなわち該干渉計内の2つの波長の光路長差を産み出し下記となる：

【0015】

【数2】

$$\Delta L_{k_2, k_1} = (\Psi_2 - 2\Psi) / k_2 \quad (1)$$

【0016】

下記に提示する実験では、達成された感度は光路長差で約5nm又は等価的に、該第2調波光に関する位相差で 9×10^{-2} ラディアンである。

20

【0017】

好ましい実施例では、水中の散乱するポリスチレン球 (scattering polystyrene spheres in water) から成る10mm厚さの混濁媒体を横断する光の位相が測定出来る。同じ厚さの水で充たしたキュベットが位相補償を提供する。弾道光は該キュベットを通して2回通過するので、有効厚さ、Lは20mmであることを注意すべきである。与えられた寸法のポリスチレン微少球 (polystyrene microspheres) は該信号アームのキュベットに徐々に追加され、光路差の変化を測定した。微少球の容積分数 (fractional volume)、 ϕ は 8×10^{-6} から 3×10^{-3} まで変えられた。該微少球の比屈折率は水のそれに対し800nmで1.20そして400nmで1.23である。光路差の各測定は該キュベット内の該2つの波長間の位相速度分数差 (fractional phase velocity difference)、 $v_2 / v_0 - v_1 / v_0$ を見出すために使用された：

30

【0018】

【数3】

$$\Delta v_2 / v_0 - \Delta v_1 / v_0 = - \Delta L_{k_2, k_1} / (n_0 L) \quad (2)$$

【0019】

ここで v_0 は水中の光の速度、 n_0 は水の屈折率である。水の分散と、混濁と、のための第2次の修正 (second order correction) は、それらが該計算に最小のインパクトしか有しないので、省略されたことを注意すべきである。我々のシステムは 10^7 中2分 (2 parts) 程に小さい位相速度差での僅かな変化を測定出来る。測定は10nmから10mmまで半径が変化する微少球について続けて行われた。図2のデータ点は散乱体寸法 (scatterer size) の関数として測定された位相速度の分数差 (measured fractional difference in phase velocity) を示す。

40

【0020】

混濁媒体を通過する弾道光の透過は複素屈折率 $n_{cx} = n - i n'$ により特徴付け出来る。混濁媒体内で距離Lを横断した弾道光場 (ballistic light field)、 $E(L)$ は入射場 (incident field)、 $E(0)$ の複素指数的減衰と

50

して書くことが出来て、

【0021】

【数4】

$$E(L) = E(0) e^{-ikn_{ex}L} = E(0) e^{-i k n (n - i n') L} \quad (3)$$

【0022】

ここで k は周囲媒体内での波数 (wavenumber) である。該屈折率の成分は、入力光の精確に前方方向で評価された散乱関数 (scattering function)、 $S(0)$ の項で表すことが出来て、

$$n = 1 + (2 N / k^3) \operatorname{Im}(S(0)) \quad (4a) \quad 10$$

$$n' = (2 N / k^3) \operatorname{Re}(S(0)) \quad (4b)$$

ここで、 N は単位体積当たりの散乱体の数である。

【0023】

該屈折率の該虚数部は散乱による弾道光の公知の減衰に付隨し広く研究されて来た。光学的定理で決定される様に、減衰は前方方向で、例え非吸収性粒子に対しても、起こることを注意すべきである。しかしながら、散乱体の該屈折率の実数部分への影響は容易には測定出来ず、従来の方法で測定出来る n の変化を誘起することは、 N の大きな値を要するので、検出するには余りに少しの弾道光しかない。本干渉計は遙かに高い感度の測定手段を提供することにより我々がこの問題を迂回することを可能にする。かくして、我々は該散乱関数の虚数部の微妙な変動を研究出来る。

【0024】

球形散乱体の屈折率 { 又は、等価的に、付隨位相速度 (the associated phase velocity) } への影響を明らかにするために、半径 a で周囲媒体に対する屈折率 m の球のバンデフルスト散乱表現 (van de Hulst scattering representation) を考える。この表現では、直線光線は球形散乱体を通してトレースされ、入る時及び出る時に離れない (not to deviate) と仮定される。これは該散乱体寸法が波長に比して大きく、該屈折率差が小さい時のみ厳密に妥当である。それにも拘わらず、それは重要な物理的洞察を提供し、下記で示す様に、これらの制限を良く超えて突出した特徴を説明する。1つの波長の光について、バンデフルスト表現は下記の形式の僅かな位相速度変化を与えるが：

$$\frac{v}{v_0} = 1 - n = - \{ 3 / (2a^3 k^3) \} (ka)^2 \{ (\sin \theta) / \theta^2 - (\cos \theta) / \theta \} \quad (5) \quad 30$$

ここで $\theta = 2ka(m - 1)$ は正規化された散乱体寸法であり、そして $(m - 1)$ は該散乱体と該周囲媒体の間の比屈折率差である。該バンデフルスト表現を用いた v/v_0 のプロットが図3で示される。比較のために、ミー理論に基づく精確な計算も示してある。

【0025】

図3は該散乱体特性により、弾道光伝播の3つの異なる状況を表す。該バンデフルスト表現を分析的に使ってこれらの各々を考える。

I. << 1 - バルクの媒体としての混濁媒体

この制限では、式(5)は下記に帰着する。

【0026】

$$v = -v_0(m - 1) \quad (6) \quad 40$$

この場合、位相速度の変化は小さな散乱体の存在によるバルクの屈折率変化からのみ起こる。もう1つの見通しから、各散乱体を通しての位相遅れが小さい時、正味の結果は簡単に、該屈折率差により決定される、位相速度の全体的变化である。

【0027】

【外1】

I I. $\rho \approx 1$ - 簡単化無し

【0028】

この状況では式(5)は簡単化され得ない。該位相速度は₁を変えると共に振動すると見られる。該位相速度の正味の変化は該前方散乱光が該入力光と同相(in phase)か逆相(out of phase)かに強く依存する。該散乱体が水より高い屈折率を有する事実にも拘わらず、₂の或る値についての不規則な位相速度増加の存在を注意すべきである。この状況では、媒体の有効屈折率はより高い屈折率を有する材料の追加により減じられる。

I I I . >> 1 - 位相速度が混濁から独立している

この制限では、式(5)は下記に帰着する。

【0029】

【数5】

$\Delta v_{\perp 0}$

(7)

【0030】

かくして位相速度は混濁の存在から独立している。これは光子モデルが完全な説明を提供する唯一の状況である。物理的には、我々は、₁が大きい時、透過光の位相は該球の中心からの距離の増加と共に急激に変化する事実から、これを理解出来る。正味の結果は該透過光の位相シフトは平均してゼロになることである。

【0031】

上記は1つの波長の光についての弾道伝播の挙動に基づく。2つの波長間の位相速度差に基づいても、なお3つの状況が明らかに見られる(図2)。又、バンデフルスト表現から計算された予測位相速度変動、そしてミー理論から得られた精確な解、が図2で示される。近似であるが、該バンデフルスト表現は測定データへの良好な適合を与える。

【0032】

2つの波長の位相速度差は、単一波長の挙動に存在しない追加的現象、(水に対する)負の分散の劇的領域(dramatic region of negative dispersion)を明らかにする。逆説的に、該負の分散は、適切に寸法付けされた正の分散散乱体(appropriately sized positive dispersion scatterer)の追加により引き起こされる。この結果は波長₁を寸法付けすることから起こる位相速度プロファイルでのシフトによる。それは上記で議論した不規則な位相速度増加に依存しない。

【0033】

位相速度差プロファイルの特異な特徴は該基本波/第2調波波長を走査することにより、多数分散媒体(polydisperse media)での精密な散乱体寸法分布を抽出することを可能にする。該高精度は位相ベース測定で達成される極端な高感度により可能となる。この方法は、細胞核の寸法分布、すなわち生物学的組織での前ガン的変化の重要指標、を測定するための関連する強度ベースの技術を補間する。又ここで説明された位相分散測定法は従来の位相差顕微鏡検査(phase contrast microscopy) {ピーシーエム(PCM)}を補間する画像形成技術の基礎を形成する。この場合、画像形成は標本を横断する弾道光の位相シフトに基づく。弾道光の使用は測定量が散乱された光から得られるピーシーエムに比較して組織について種々の種類の情報を明らかにする。本発明は分散性で、弱く散乱させる組織でピーシーエムより良好に動作する。

【0034】

この実施例の、図4で見られる干渉計28では、顕微鏡対物レンズ03及び04はビームを、両波長で約7μmのエフダブリューエイチエム(FWHM)を有する切り取った組織の様なサンプル上に焦点合わせするが、しかしながら、入って来る通路と重なるように戻り通路を整合させることに困難がありそれは解像度を約10マイクロメートルに劣化させる。より精細な解像度はより高いパワーの対物レンズと改良された整合とを使用することにより達成出来る。基準ミラーは1mm/sの一定速度で移動し、該戻りビーム上にドップラーシフトを誘起する。前の様に、該2つの複合ビームは次いで再組合せされ、ダイク

10

20

30

40

50

ロイックミラーでそれらの波長成分により分離され、そして光検出器により別々に測定される。

【0035】

この方法の感度を図解するために、該屈折率分散変化が水に少量のデーエヌエイを追加することにより測定された。該測定は、該顕微鏡対物レンズ(01及び02)とサンプルを非常に希釈されたヘリングテス^トデーエヌエイ(0.014%容積濃度)のキュベットと置き換えることにより行われた。この特定のサンプルで、該キュベットは10mmの厚さで、それは該システムの2重通過設計のためL=20mmとさせる。補償器30とその付随対物レンズ(03及び04)は対応して水のみを含むキュベットにより置き換えられた。10の別々の測定に基づく測定屈折率分散は(2.27±0.04)×10⁻⁶である。

【0036】

現行の技術は画像に帰着する質的測定を提供するがそこでは寄与を吸収と位相シフトから分離することは難しい。本発明は該位相シフトの量的測定を提供する。加えて、現行の技術は対照用にターゲットからの散乱された光及び散乱されない光の間の小さな位相シフトに依存するが、本発明は該ターゲットの屈折に付随する非散乱光の小さな位相シフトを直接測定する。これは干渉ベースの技術が散乱光より遙かに効率的に非散乱光を検出する事実から生じる。従って、本方法は量的特徴付けが要求され、散乱が少ししか又は全く無い状況に適用出来る。

【0037】

図解として、2枚のカバースリップ(cover slips)間にサンドウイッチされた水滴とデーエヌエイ溶液(1.0%容積濃度)滴とを含む同様に用意されたサンプルについて、従来の位相差技術の方法の性能を本発明の方法と比較する。該カバースリップ間の間隔は170マイクロメートルである。図5の従来技術を使用して発生された下部画像で明らかな様に、ピーデーエムは該2つの滴を容易に区別出来て、該デーエヌエイ溶液の屈折率分散値を提供する。対照的に、従来技術を使用して発生された上部画像は該2つを区別しない。興味あることは、該実験で測定された屈折率分散、(1.3±0.4)×10⁻⁴は、それらの濃度比のみに基づく、キュベット測定から外挿された値、1.6×10⁻⁴と異なる。この差は該屈折率が濃度のみならず散乱体寸法にも依る事実に帰せられる。かくして、より高い濃度では、散乱体としての挙動をする、デーエヌエイ凝集体(DNA aggregator)の形成が該屈折率を有効に変えている。

【0038】

脳組織サンプルの画像に対する本位相分散方法を更に図解する。ミクロトームを使用して、凍結脳組織ブロックから16マイクロメートル厚さのサンプルが用意された。該サンプルはアルツハイマー疾患者の検死解剖材料から得られた。該サンプルの湿気を保ち、屈折率整合(index matching)を提供するためにグリセロールの滴が付けられた。図6Aは同じサンプルから取られた位相差(上部)及び位相分散(中間)画像を示す。比較用に、隣接の薄い部分からのステインされたサンプルも下部画像に示す。見られる様に、位相差画像は該グレーと白の物質間で僅かな区別のみを表すが、これは脳組織の比較的弱い散乱のためである。比較すると、2つの間の差は本発明の方法では極めて視認可能である。これは、小さいが測定可能な屈折率分散の変化を引き起こす該2つの組織の種類の組成の生物学的差に帰することが出来る。

【0039】

又位相分散方法は後方散乱形状(backscattering geometry)を使うことにより、3D画像形成用に使用することができる。これは生体内サイトでのトモグラフィー的位相分散画像を提供する。この技術は屈折率での変化として現れる小さな生物学的差に非常に敏感である。加えて、ヘテロダイン信号の振幅と位相との同時測定は該屈折率の実数部及び虚数部を生じ、走査されたサンプルについてデータのより完全なセットを提供する。

【0040】

10

20

30

40

50

図6Bで見られる様に、上部左のパネル画像形成されるべき構造を、下部の2つのパネルは800及び400nmでのOCT画像を示すが、該画像はゼラチンと水の間を区別することに失敗している。上部右のパネルは該構造の差動位相画像を示し、該画像は画像の下部バンドで、光がミラーで反射した後のゼラチン／水の境界を明らかに特徴付けている。

【0041】

かくして、基本波／第2調波の波長をスペクトル的に走査することにより、組織内の精密な散乱体寸法分布が測定出来る。寸法の特徴付けは実際のボクセル解像度 (actual voxel resolution) を遙かに超えるが、それは位相ベースの測定が散乱体寸法での屈折率のスペクトル的変動に非常に敏感なためである。この方法は、生物学的組織での前ガン性又はガン性変化の重要な指標である細胞核の寸法分布及び染色質含有量 (chromatin content) の3次元画像を色付けすることにより関連の強度ベースの技術を補間する。

【0042】

第1の実施例では両波長は低コヒーレンス源からである必要がある。例えば、フェムト秒 (femtosecond) チタン：サファイヤレーザー源とその第2調波発生である。もう1つの例は、適当な波長の2つのスーパールミネセントダイオード (superluminescent diodes) である。この開示では、両波長は同じ走査深さまで貫通し、散乱され／反射され戻される。次いでそれらの相対位相は、それらがヘテロダイン信号を形成するためそれらのそれぞれの基準アーム成分と干渉した後、測定される。

【0043】

図7で図解されるもう1つの好ましい実施例では、唯1つの波長が低コヒーレンス源52からである必要のある3D位相画像形成システム50がある。第2波長はコヒーレントな連続波54 {シーダブリュー(CW)} (又は何等か他のコヒーレント源) からでよい。追加的要求は該源のコヒーレンス長さ (coherence length) が該深さ走査の全長さより大きいことである。

【0044】

この状況では、この光源の、該ターゲットの支配的な反射／散乱表面60からの、反射成分64がその基準アーム成分と干渉し、該ターゲット組織68の深さ式走査中に連続的ヘテロダイン信号を発生する。その位相は次いで、光源の対の低コヒーレンス成分からジッターノイズを除去するために上記説明と同様な仕方で使用されてもよい。該低コヒーレンス成分は該走査された深さまで貫通し反射され／後方散乱させられる。それはその基準アーム成分とヘテロダイン信号を形成する。この画像形成システムで上記説明の様に2つの低コヒーレンス源が使用される実施例では、両波長が貫通し組織により反射され／散乱させられる。

【0045】

前に説明した本発明の光散乱スペクトロスコピー式のシステムと方法と関連した光伝送及び／又は収集用光ファイバーシステム200が図8と関連して図解される。光源は少なくとも2つの波長₁、₂を有するビーム202を提供するが、それは光ファイバー204の近位の端部に結合される。該光ファイバーシステムに組み入れられるビームスプリッタ206はファイバー208及び210を通しそしてそれぞれレンズ216及び214を通るよう光成分を発送する。第1光成分は方向220の方へ進む移動ミラー220により反射され、ファイバー210及び212を通して戻る。第2光成分は組織218上へ導かれ、そして該組織により散乱させられた光はファイバー208及び212を通して戻る。ダイクロイックミラー230は該2つの波長を₁及び₂を分離し、それはそれぞれ検出器240及び242により検出される。ヘテロダイン検出システム250及び252が、図1に関連して前記で説明した様に該検出されたシステムを処理するために使用される。ここに説明されたシステムは、生体内で、人体の管腔又は組織から検索される診断情報を提供するために標準的内視鏡 (standard endoscopies) と連携して使用することが出来る。

【0046】

10

20

30

40

50

本発明はその好ましい実施例を参照して特定的に示され、説明されたが、その中では形式及び詳細で種々の変更が行われても良いが、それらは付属する請求項により含まれる本発明の範囲から離れたものでないことを当業者は理解するであろう。

【0047】

本特許のファイルはカラーで作られた少なくとも1枚の図面を含む。カラーの図面を伴うこの特許のコピーは請求し、必要な料金を支払えば特許商標庁により提供される。

【図面の簡単な説明】

【図1】

ミラーを含む本発明の位相測定システムを図解する。M1及びM2はビームスプリッターBS、D1及びD2は光検出器、そしてDMは400nm/800nmダイクロイックミラーである。
10

【図2】

散乱体半径に対する位相速度差を図解する。

【図3】

正規化された散乱寸法、に対するモデル化され、正規化された位相速度、 ϕ の表現をグラフ式に図解するが、そこでは正規化された屈折率差、 $(m - 1)$ 、はこの特定の例用には0.2に等しい。

【図4】

ミラーM1及びM2、ビームスプリッターBS、顕微鏡対物レンズ01, 02, 03そして04、光検出器D1及びD2、そして400nm/800nmダイクロイックミラーDMを使用する本発明のもう1つの好ましい実施例である。
20

【図5】

2枚のカバースリップ間にサンドウイッチにされた、水滴と、該デーエヌエイ溶液の測定屈折率分散、 $(n_{400\text{nm}} - n_{800\text{nm}})$ が $(1.3 \pm 0.2) \times 10^{-4}$ であった1.0%デーエヌエイ溶液の滴と、の位相差システム(phase contrast system)（上方）とピーデーエム（PDM）（下方）とからの画像を比較する。

【図6A】

16マイクロメートルの厚さの脳のサンプルでの白い物質 - グレイ（gray）の物質間のインターフェースの画像を含むが、その頂部は位相差画像（phase contrast image）、中間部は本発明の位相分散画像（phase dispersion image）そして底部はヘモトキシリン（hemotoxylin）とイオシン（eosin）でステイン（stained）された相接する凍結部分（adjacent frozen section）である。
30

【図6B】

本発明の3D画像形成を標準的オーシーテー（OCT）画像と比較する。

【図7】

本発明の組織の画像形成用に使用されるシステムを図解する。

【図8】

本発明の光ファイバーシステムの使用を図解する。

本発明の前記及びその他の目的、特徴そして利点は、種々の図を通して同様な参照文字が同じ部品を参照する付属図面により図解される、本発明の好ましい実施例の下記特定説明から明らかになるであろう。該図面は必ずしも尺度合わせされておらず、寧ろ、本発明の原理を図解することに力点が置かれている。
40

【図1】

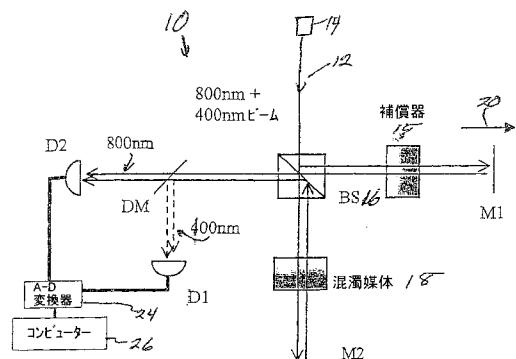


Figure 1

【図2】

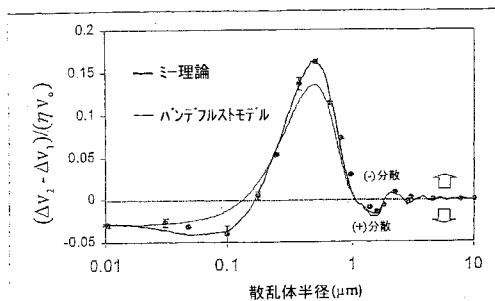


Figure 2

【図3】

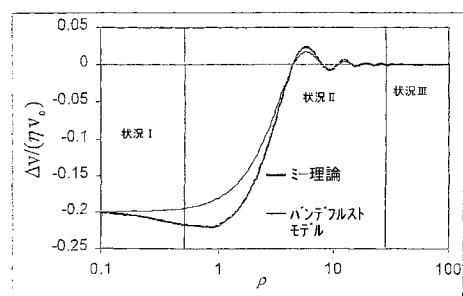


Figure 3

【図4】

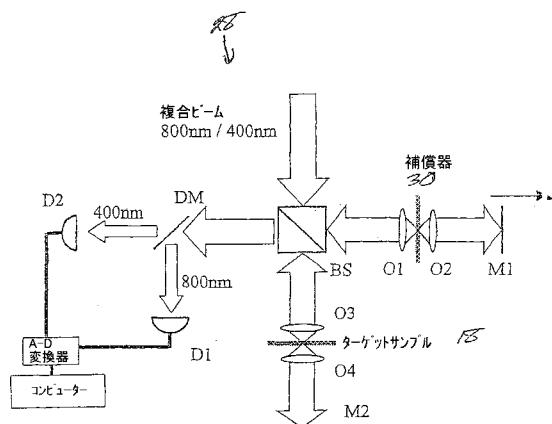


Figure 4

【図5】

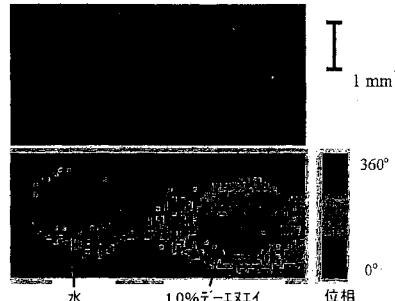
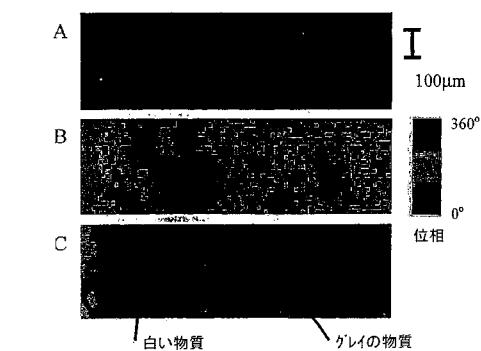
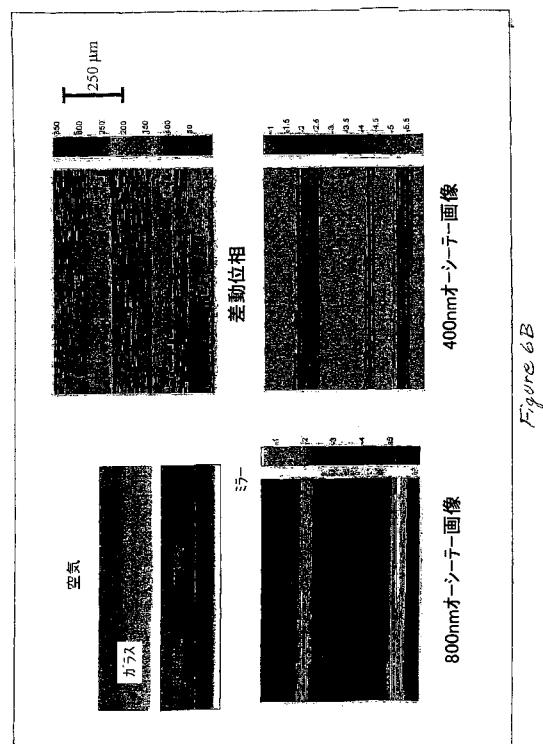
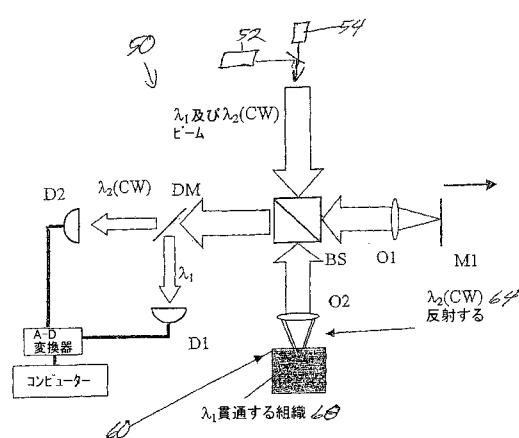
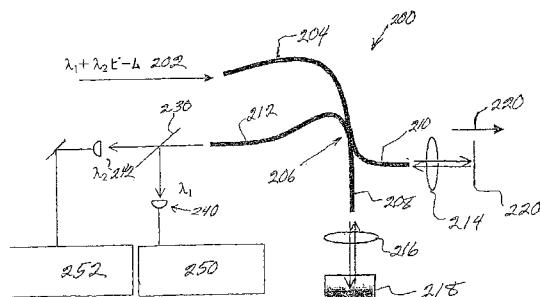




Figure 5


【図 6 A】


【図 6 B】

【図 7】

【図 8】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
13 December 2001 (13.12.2001)

PCT

(10) International Publication Number
WO 01/94913 A2

(51) International Patent Classification: G01N 15/00 Boston, MA 02139 (US). FELD, Michael, S. [US/US]; 56 Hinckley Road, Newton, MA 02168 (US).

(21) International Application Number: PCT/US01/18721

(74) Agents: HOOVER, Thomas, O. et al.; Hamilton, Brook, Smith & Reynolds, P.C., Two Militia Drive, Lexington, MA 02421 (US)

(22) International Filing Date: 8 June 2001 (08.06.2001)

(25) Filing Language:

English

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language:

English

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data: 09/591,297 9 June 2000 (09.06.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application: US 09/591,297 (CIP)

Filed on 9 June 2000 (09.06.2000)

(71) Applicant (for all designated States except US): MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, MA 02139 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YANG, Changhuei [US/US]; 136 Columbus Street, #1, Cambridge, MA 02139 (US). WAX, Adam [US/US]; 151 Tremont Street, #11T,

Published: — without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/94913 A2

(54) Title: PHASE DISPERSIVE TOMOGRAPHY

(57) Abstract: Radiation that propagates undeflected through a turbid medium, undergoes a small change in phase velocity due to its wave nature. This change can be measured using a differential phase optical interferometer. Ballistic propagation can be classified into three regimes: for scatterers small compared to the wavelength, the turbid medium acts as a bulk medium; for large scatterers, phase velocity is independent of turbidity; and in the intermediate regime, the phase velocity is strongly dependent on scatterer radius. In particular, for scatterers having intermediate size, a phase velocity increase and negative dispersion is observed by adding positive dispersion scatterers of higher refractive index. These measurements are made using the phase difference between fundamental and harmonic light and can be used to provide diagnostic information and images of tissues or biological fluids.

WO 01/94913

PCT/US01/18721

-1-

PHASE DISPERSIVE TOMOGRAPHY

RELATED APPLICATIONS

This is a continuation-in-part of U.S. Application No. 09/591,297 filed on June 9, 2000 the entire teachings of the above application is incorporated herein by reference in its entirety.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by Grant Nos. P41-RR02594, 1 F32 RR05075-01 and 1F32 CA80345-01 from the National Institutes for Health and by Grant No. 9708265CHE of the National Science Foundation. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Ballistic light is defined as the light which traverses a scattering medium in the same direction as the incident light. Conventionally, ballistic propagation is pictured as photons which are undeflected in transmission. Such a picture, henceforth called the photonic model, is extensively used in optical tomography, and it explains many properties of ballistic propagation. For example, the photonic model explains the emergence of ballistic light from a thick turbid medium at an earlier time than the scattered light. However, this model is incomplete, as the wave nature of the light is not considered.

Interferometers have been used to measure phase changes based on fluctuations in path length. Phase measurements using interference microscopes, for example, have been used previously to provide two dimensional images of thin tissue samples.

However, there is a continuing need for improvements in systems and methods for measuring turbid media such as tissue.

SUMMARY OF THE INVENTION

The phase velocity of light traversing a diffuse scattering medium is a function of scatterer size. To measure this effect optically, an interferometer that measures very small differences in phase velocity between at least two harmonically related wavelengths is used, such as 800 and 400 nm, for example. One wavelength that is an integer multiple of the other wavelength can thus be used to provide quantitative phase information regarding a scanned region of interest. A pair of such wavelengths can be generated harmonically or by using two separate light sources which satisfy the integer multiple requirement to within 5% of the lowest wavelength, i.e. one wavelength is about an integer multiple of the other wavelength.

In a preferred embodiment, the interferometer system of the present invention is sensitive to phase velocity differences at least of 40 m/s in a 2 cm thick turbid sample, for example, or equivalently an optical path length difference of about 5nm. This sensitivity provides for the measurement of very dilute turbid media, a more relevant model for optical applications such as biomedical imaging and remote sensing through atmospheric conditions such as smoke or fog.

The variations in phase velocity result from the wave nature of ballistic propagation and can be measured by treating the ballistic electromagnetic field as the interference of the input light field with the scattered field. Using van de Hulst and Mie scattering theories, ballistic propagation separates into three regimes: (1) When the scatterer size (a) is much smaller than the optical wavelength (λ), the turbid medium may be approximated as a bulk medium for phase velocity considerations; (2) when a is comparable to λ , the phase velocity is strongly dependent on scatterer size; (3) when a is much larger than λ , turbidity can be ignored for phase velocity considerations. Consequently, by measuring tissue with appropriate harmonically related wavelengths of light, the size and distribution of cellular structures within the tissue can be measured.

Ballistic light can propagate with a phase velocity that is uncharacteristic of the constituent materials of the turbid medium. Hence, the ballistic light itself must carry phase information about the structure and composition of the turbid medium. The photonic model simply cannot explain this variation in phase velocity.

A preferred embodiment of the invention relates to a microscopy imaging system referred to herein as phase dispersion microscopy (PDM). This system is based on measuring the phase difference between a fundamental wavelength of light and a harmonic of unscattered light that are transmitted through a medium. PDM 5 employs an interferometer that substantially reduces or eliminates noise due to optical path length fluctuations. In other phase measurement techniques, it is difficult to account for minute interferometer path length differences in the measured phase. Thus, without an independent way of eliminating such jitter, phase measurements cannot directly yield physically relevant information. In contrast, the 10 phase measured in the present system is independent of path length errors. As an example, the system is used to measure very small anomalous phase velocity differences experienced by ballistic light during propagation through turbid media. The present system and method can provide quantitative information by measuring the refractive index dispersion of very dilute material such as DNA-water solutions. 15 The sensitivity of the technique and its image formation capabilities can be applied of the imaging of an unsustained tissue section.

This technique can be used to provide two dimensional (2D) or three dimensional (3D) imaging of tissue both *in vitro* and *in vivo*. Additional details regarding the systems and methods of the invention can be found in Application No. 20 60/200,187 filed on April 28, 2000 which is incorporated herein by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

The file of this patent contains at least one drawing executed in color.

Copies of this patent with color drawings will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

5 Figure 1 illustrates a phase measurement system in accordance with the invention including mirrors. M1 and M2 are beamsplitters BS, D1 and D2 are photodetectors, and DM is a 400 nm/800 nm dichroic mirror.

Figure 2 illustrates phase velocity difference versus scatterer radius.

Figure 3 graphically illustrates a representation of modeled normalized phase 10 velocity, $\frac{\Delta v}{\eta v_0}$ versus normalized scatter size, ρ where the normalized refractive

index difference, $(m-I)$, equals 0.2 for this particular example.

Figure 4 is another preferred embodiment of the invention using mirrors, M1 and M2, a beam splitter BS, microscopic objective lens 01, 02, 03 and 04, photodetectors D1 and D2, and a 400 nm/ 800 nm dichroic mirror DM.

15 Figure 5 compares images from a phase contrast system (top) and PDM (bottom) of a drop of water and a drop of 1.0% DNA solution sandwiched between 2 coverslips in which the measured refractive index dispersion, $(\Delta n_{400\text{nm}} - \Delta n_{800\text{nm}})$, of the DNA solution was $(1.3 \pm 0.2) \times 10^{-4}$.

Figure 6A includes images of a white matter - gray matter interface in a 16 20 μm thick brain sample with the top being a phase contrast image, the middle being a phase dispersion image in accordance with the present invention and the bottom image being an adjacent frozen section stained with hematoxylin and eosin.

Figure 6B compares the 3D imaging of the present invention with standard OCT images.

25 Figure 7 illustrates systems used for imaging of tissue in accordance with the invention.

Figure 8 illustrates the use of a fiber optic system in accordance with the invention.

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The measurements are made using a low-coherence phase dispersion interferometer 10 shown in Figure 1. The input light 12 is created by superposing beams of laser light at the fundamental and preferably the second harmonic frequencies. The source 14 can be a low coherence Ti:sapphire laser producing 150 fs pulses at 800 nm, and the second harmonic is generated by a standard frequency doubler. The superposed beam is split into two components at the beamsplitter 16. One component makes two passes through the turbid medium 18 in the signal arm of the interferometer with mirror M2. The other component passes through a compensator cuvette of water 15 and reflects from a reference mirror M1 in the reference arm. The reference mirror M1 moves at a constant velocity 20 and induces a Doppler shift on the return beam. The recombined beams are then separated by wavelength using a dichroic mirror DM and measured separately by photodetectors D1 and D2. The resulting heterodyne signals at both wavelengths are measured and digitized by a 16-bit 100 kHz A/D converter 24 and further processed and stored in memory with data processor 26. Each digitized signal is bandpassed around its center heterodyne frequency, given by the Doppler shift. The filtered signals are then Hilbert transformed, and the respective phases Ψ_1 (fundamental) and Ψ_2 (second harmonic) are extracted. Related phase techniques have been used to measure the dispersion of metals and the refractive index of air.

In a conventional interferometer, path length fluctuations as small as a tiny fraction of a wavelength will vary the measured phase significantly; therefore, without an independent way of eliminating such jitter, phase measurements cannot directly yield physically relevant information. However, it can be seen that jitter of

-6-

magnitude Δx in either the signal or reference arm of our interferometer will vary the phases, Ψ_1 and Ψ_2 , by $k_1\Delta x$ and $k_2\Delta x$, respectively, with k_1 and k_2 the free space wavenumbers of the fundamental and second harmonic light beams. Since k_2 is exactly double k_1 , the effect of jitter can be totally eliminated by subtracting twice Ψ_1 from Ψ_2 . Note that such elimination is only possible when one wavelength is an integer multiple of the other. This operation yields, $\Delta L_{k_2, k_1}$, the difference in optical path lengths of the two wavelengths in the interferometer, with great sensitivity:

(1)

$$\Delta L_{k_2, k_1} = \frac{\Psi_2 - 2\Psi_1}{k_2}$$

10 In the experiments presented below, the sensitivity achieved is about 5 nm in optical path length difference or, equivalently, about 9×10^{-2} rad in phase difference with respect to the second harmonic light.

15 In a preferred embodiment, the phase of light traversing a 10 mm thick turbid medium composed of scattering polystyrene spheres in water can be measured. A water filled cuvette of the same thickness provides phase compensation. Note that because the ballistic light makes two trips through the cuvette, the effective thickness, L , is 20 mm. Polystyrene microspheres of a given size are gradually added to the signal arm cuvette, and the changes in optical path difference are measured. The fractional volume of microspheres, η , is varied from 8×10^{-6} to 3×10^{-3} . The 20 relative refractive index of the microspheres is 1.20 at 800 nm and 1.23 at 400 nm, with respect to that of water. Each measurement of optical path difference is then

used to find the fractional phase velocity difference, $\frac{\Delta v_2}{v_2} - \frac{\Delta v_1}{v_0}$, between the

two wavelengths in the cuvette:

(2)

$$\frac{\Delta v_2}{v_0} - \frac{\Delta v_1}{v_0} = -\frac{\Delta L_{k_2, k_1}}{n_0 L},$$

with v_0 the speed of light in water and n_0 the refractive index of water. Note that second order corrections due to dispersion of water and turbidity are omitted, as they have minimal impact on the calculation. Our system can measure fractional changes in phase velocity difference as small as 2 parts in 10^7 . Measurements are made for a succession of microspheres varying in radius from 10 nm to 10 mm. The data points of Figure 2 show the measured fractional difference in phase velocities as a function of scatterer size.

10 The transmission of the ballistic light through the turbid medium can be characterized by a complex index of refraction $n_{ex} = n - in'$. The ballistic light field, $E(L)$, which has traversed a distance L in the turbid medium, can be written as a complex exponential attenuation of the incident field, $E(0)$:

(3)

$$15 E(L) = E(0)e^{-ikn_{ex}L} = E(0)e^{-ikn(n-in')L},$$

with k the wavenumber in the surrounding medium. The components of the refractive index can be expressed in terms of $S(0)$, the scattering function evaluated in the exact forward direction of the input light:

(4a)

$$20 n = 1 + \frac{2\pi N}{k^3} \text{Im}(S(0)),$$

(4b)

$$n' = \frac{2\pi N}{k^3} \text{Re}(S(0)),$$

with N the number of scatterers per unit volume.

25 The imaginary part of the refractive index is associated with the well-known attenuation of ballistic light due to scattering and has been extensively studied. Note

that, as determined by the optical theorem, attenuation occurs in the forward direction, even for non-absorbing particles. However, the effect of scatterers on the real part of the refractive index cannot be readily measured; to induce a change in n which is measurable by conventional methods requires such a large value of N that 5 there is too little ballistic light to detect. The present interferometer allows us to circumvent this problem by providing a much more sensitive means of measurement. Thus, we can study subtle variations of the imaginary part of the scattering function.

To elucidate the effect of spherical scatterers on the refractive index (or, 10 equivalently, the associated phase velocity), consider the van de Hulst scattering representation for spheres of radius a and refractive index m relative to the surrounding medium. In this representation, straight rays are traced through a spherical scatterer and assumed not to deviate during entry and exit. This is strictly valid only when the scatterer size is large compared to the wavelength and the 15 refractive index difference is small. Nevertheless, it provides important physical insights and, as shown below, describes the salient features well beyond these limits. For light at one wavelength, the van de Hulst representation gives a fractional phase velocity change of the form:

(5)

$$20 \quad \frac{\Delta v}{v_0} = 1 - n = -\frac{3n}{2a^3 k^3} (ka)^2 \left[\frac{\sin \rho}{\rho^2} - \frac{\cos \rho}{\rho} \right],$$

with $\rho = 2ka(m-1)$ the normalized scatterer size, and $(m-1)$ the relative refractive index difference between the scatterers and the surrounding medium. A plot of $\frac{\Delta v}{v_0}$ using the van de Hulst representation is shown in Figure 3. For comparison, 25 an exact computation based on Mie theory is also shown.

Figure 3 reveals three different regimes of ballistic light propagation, depending on the scatterer properties. Consider each of these analytically using the van de Hulst representation:

-9-

I. $\rho \ll 1$ - turbid medium as bulk medium.

In this limit, Eq. (5) reduces to:

$$\Delta v = -\eta v_0 (m - 1) \quad (6)$$

5 In this case, the change in phase velocity arises only from bulk refractive index change due to the presence of small scatterers. From another perspective, when the phase lag through each scatterer is small, the net result is simply an overall change in phase velocity, as determined by the refractive index difference.

II. $\rho \approx 1$ - no simplification.

10 In this regime Eq. (5) cannot be simplified. The phase velocity is seen to oscillate with changing ρ . The net change in phase velocity is strongly dependent on whether the forward scattered light is in phase or out of phase with the input light. Note the existence of an anomalous phase velocity increase for some values of ρ , despite the fact that the scatterers have *higher* refractive index than water. In this
15 situation, the effective refractive index of the medium is *reduced* by the addition of material with higher refractive index.

III. $\rho \gg 1$ - phase velocity is independent of turbidity.

In this limit, Eq. (5) reduces to:

20 $\Delta v \approx 0$ The phase velocity is thus independent of the presence of turbidity. This is the only regime in which the photonic model provides a complete description. Physically, we can understand this from the fact that when ρ is large, the phase of the transmitted light varies rapidly with increasing distance from the center of the sphere. The net
25 result is that the phase shift of the transmitted light averages to zero.

WO 01/94913

PCT/US01/18721

-10-

The above is based on the behavior of ballistic propagation for light of a single wavelength. Based on phase velocity differences between two wavelengths, the three regimes still can be clearly seen (Figure 2). The predicted phase velocity variation calculated from the van de Hulst representation, and the exact solution 5 derived from Mie theory, are also shown in Figure 2. The van de Hulst representation, though approximate, gives a good fit to the measured data.

The phase velocity difference of the two wavelengths reveals an additional phenomenon that is absent in single wavelength behavior, a dramatic region of negative dispersion (relative to water). Paradoxically, the negative dispersion is 10 caused by the addition of appropriately sized *positive* dispersion scatterers. This effect is due to the shift in the phase velocity profile arising from the scaling of ρ with wavelength. Note that it is not dependent on the anomalous phase velocity increase discussed above.

The distinctive features of the phase velocity difference profile makes it 15 possible to extract precise scatterer size distributions in polydisperse media, by scanning the fundamental/second harmonic wavelengths. The high precision is afforded by the extremely high sensitivity achieved with phase-based measurements. This method complements related intensity-based techniques for measuring the size distribution of cell nuclei, an important indicator of pre-cancerous changes in 20 biological tissues. The phase dispersion measurement method described here can also form the basis of an imaging technique which is complementary to conventional phase contrast microscopy (PCM). In this case, image formation is based on the phase shift of ballistic light traversing the specimen. The use of ballistic light reveals a different type of information about the tissue compared to PCM, where the 25 measured quantity is derived from scattered light. The present invention performs better than PCM in dispersive and weakly scattering tissues.

In this embodiment an interferometer 28 seen in Figure 4, microscope objectives 03 and 04 focus the beam onto the sample such as excised tissue with a FWHM of about 7 μm at both wavelengths, however, there can be difficulty in 30 aligning the returning path to overlap with the incoming path degrades the resolution to about 10 microns. A finer resolution can be achieved by using higher power

-11-

objectives and improved alignment. The reference mirror moves at a constant velocity of 1mm/s and induces a Doppler shift on the returning beam. As before, the two composite beams then are recombined, separated by their wavelength components with dichroic mirror, and measured separately by photodetectors.

5 To illustrate the sensitivity of this method, the refractive index dispersion change was measured by adding a small amount of DNA to water. The measurement is performed by replacing the microscope objectives (O1 and O2), and the sample with a cuvette of very dilute herring testes DNA (0.014% vol. conc.). In this particular example, the cuvette is 10 mm thick, which makes $L=20$ mm due to
10 the system's double pass configuration. The compensator 30 and its associated objectives (O3 and O4) are correspondingly replaced by a cuvette containing only water. The measured refractive index dispersion, based on 10 separate measurements, is $(2.27\pm 0.04)\times 10^{-6}$.

Existing techniques provided a qualitative measurement resulting in an
15 image where it is difficult to separate the contributions from absorption and phase shift. The present invention provides a quantitative measurement of the phase shift. In addition, existing techniques relied on small phase shifts between the scattered and unscattered light from the target for contrast, whereas the present invention directly measures the small phase shifts of the unscattered light associated with the
20 refraction of the target. This results from the fact that interference-based techniques detect unscattered light far more efficiently than scattered light. Therefore, the present method can be applied to situations for which quantitative characterizations are required and where there is little or no scattering.

As an illustration, compare the performance of the method of prior phase
25 contrast techniques to the method of the present invention on similarly prepared samples comprising a drop of water and a drop of DNA solution (1.0% vol. conc.) sandwiched between two cover slips. The separation between the cover slips is 170 μ m. As evident in the lower image generated using a prior technique of Figure 5, PDM can easily distinguish the two drops and provides a refractive index dispersion
30 value for the DNA solution. In contrast, the upper image generated using a prior technique does not distinguish between the two. Interestingly, the refractive index

WO 01/94913

PCT/US01/18721

-12-

dispersion measured in the experiment, $(1.3 \pm 0.2) \times 10^{-4}$, differs from the value, 1.6×10^{-4} , extrapolated from the cuvette measurement, based only on the ratio of their concentrations. This difference can be attributed to the fact that the refractive index depends on scatterer size, as well as concentration. Thus, at higher concentration,

5 the formation of DNA aggregates, which behave as scatterers, effectively alters the refractive index.

To further illustrate the present phase dispersion method to images of a brain tissue sample. A $16 \mu\text{m}$ thick sample was prepared from a frozen brain tissue block using a microtome. The sample was obtained from the autopsy material of an

.10 Alzheimer disease patient. A drop of glycerol was applied to keep the sample moist and to provide index matching. Figure 6A shows phase contrast (top) and phase dispersion (middle) images taken from the same sample. For comparison, a stained sample from an adjacent thin section is also shown in the lower image. As can be seen, the phase contrast image reveals only a slight distinction between the gray and

.15 white matter, this is due to the relatively weak scattering of brain tissue. In comparison, the differences between the two are quite visible with the present method. This can be attributed to the biological differences in the composition of the two tissue types, which give rise to a small but measurable refractive index dispersion change.

20 Phase dispersion methods can also be used for 3D imaging, by employing a backscattering geometry. This provides tomographic phase dispersion images on *in-vivo* sites. This technique is very sensitive to small biological differences that manifest themselves as changes in the index of refraction. In addition, simultaneous measurement of the amplitude and phase of the heterodyne signals yields the real

.25 and imaginary parts of the refractive index, providing a more complete set of data about the scanned sample.

As seen in Figure 6B, the upper left panel shows the structure to be imaged, the lower two panels show OCT images at 800 nm and 400 nm which fail to discriminate between gelatin and water. The upper right panel shows a differential

.30 phase image of the structure which in the lower band of the image clearly features the gelatin/water boundary after the light reflects off the mirror.

-13-

Thus, by spectrally scanning the fundamental/second harmonic wavelength, precise scatterer size distributions in tissue can be measured. The size characterization can far exceed the actual voxel resolution, as phase-based measurements are very sensitive to the spectral variation of the refractive index with 5 scatterer size. This method complements related intensity-based techniques by rendering three dimensional images of the size distribution and chromatin content of cell nuclei which are important indicators of pre-cancerous or cancerous changes in biological tissues.

In a first embodiment both wavelengths need to be from low coherence 10 sources. For example, a femtosecond Ti:sapphire laser source and its second harmonic generation. Another example, is two superluminescent diodes of appropriate wavelengths. In this manifestation, both wavelengths penetrate to the same scanned depth and are scattered/reflected back. Their relative phase is then measured after they interfere with their respective reference arm components to form 15 heterodyne signals.

In another preferred embodiment illustrated in Figure 7, is a 3D phase imaging system 50 in which only one wavelength needs to be from a low coherence source 52. The second wavelength may be from a coherent continuous wave 54 (CW) (or any other coherent source). The additional requirement is that the 20 coherence length of the source is greater than the total length of the depth scan.

In this situation, the reflected component 64 of this light source, from the target's dominant reflecting/scattering surface 60, interferes with its reference arm component and generates a continuous heterodyne signal during depth wise scan of the target tissue 68. Its phase may then be used in a similar manner described above 25 to eliminate jitter noises from the low coherence component of the pair of light sources. The low coherence component penetrates to the scanned depth and are reflected/scattered back. It forms a heterodyne signal with its reference arm component. In the embodiment in which two low coherence sources are used as described above in this imaging system, both wavelengths penetrate and are reflected 30 and/or scattered by the tissue.

Illustrated in connection with Figure 8 is a fiber optic system 200 for light delivery and/or collection in conjunction with the light scattering spectroscopic systems and methods of the invention described previously. A light source provides a beam 202 that includes at least two wavelengths λ_1 , λ_2 which are coupled to the proximal end of optical fiber 204. A beam splitter 206 incorporated into the fiber optic system delivers light components through fibers 208 and 210, and through lenses 216 and 214, respectively. A first light component is reflected by moving mirror 220 traveling in direction 220, and returns through fibers 210 and 212. A second light component is directed onto tissue 218, and light scattered by the tissue is returned through fibers 208 and 212. Dichroic mirror 230 separates the two wavelength λ_1 and λ_2 which are detected by detectors 240 and 242, respectively. The heterodyne detection systems 250 and 252 are used to process the detected systems as described previously in connection with Figure 1. The systems described herein can be used in conjunction with standard endoscopics to provide diagnostic information retrieved from lumens or tissue within the human body *in vivo*.

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

CLAIMS

What is claimed is:

1. A device for optically measuring a medium comprising:
 - 5 a light source that provides a first wavelength and a second wavelength of light such that the second wavelength harmonically related to the first wavelength;
 - 10 an optical system that couples light of the first wavelength and the second wavelength along both a first optical path and a second optical path, the first optical path extending onto a medium to be measured and the second path undergoing a change in path length; and
 - 15 a detector that detects light from the medium and light from the second optical path to measure a change in phase of light interacting with the medium.
2. The device of Claim 1 wherein the medium comprises biological tissue.
- 15 3. The device of Claim 1 further comprising a data processor that determines a size of a particle within the medium.
4. The device of Claim 1 further comprising a data processor that forms an image of the medium with the detected scattered light.
5. The device of Claim 1 further comprising a data processor that determines a 20 change in phase velocity of light interacting with the medium.
6. The device of Claim 1 wherein the light source emits light in the visible and near-infrared regions.

-16-

7. The device of Claim 1 further comprising providing a first low coherence light source and a second low coherence light source.
8. The device of Claim 1 further comprising providing a low coherence light source and a coherent light source.
- 5 9. The device of Claim 1 wherein the second wavelength is within 5% of an integer multiple of the first wavelength.
10. The device of Claim 1 further comprising a fiber optic device that couples light from the light source onto the medium.
11. The device of Claim 1 further comprising a fiber optic device that couples 10 light from the medium to the detector.
12. The device of Claim 1 wherein the detector comprises a first photodetector and a second photodetector.
13. The device of Claim 1 further comprising a compensator.
14. The device of Claim 1 further comprising a first scanning mirror reflecting 15 light on the first optical path and a second mirror reflecting light on the second optical path.
15. The device of Claim 1 further comprising a beam splitter and a plurality of lenses.
16. The device of Claim 1 further comprising an analog to digital converter 20 connected to the detector.
17. The device of Claim 1 further comprising a heterodyne detection system.

18. The device of Claim 1 further comprising a fiber optic probe and an endoscope.
19. The device of Claim 1 wherein the light source comprises a continuous wave laser.
- 5 20. A method for optically measuring a medium comprising:
providing a first wavelength and a second wavelength of light such
that the second wavelength is harmonically related to the first wavelength;
directing light of the first wavelength and the second wavelength
along both a first optical path and a second optical path, the first optical path
10 extending onto a medium to be measured and the second path undergoing a
change in path length; and
detecting light from the medium and light from the second optical
path to measure a change in phase of light interacting with the medium.
- 15 21. The method of Claim 20 wherein the medium comprises a light scattering medium.
22. The method of Claim 20 further comprising determining a size of a particle within the medium.
23. The method of Claim 20 further comprising forming an image of the medium with the detected scattered light.
- 20 24. The method of Claim 20 further comprising measuring a change in phase velocity of light interacting with the medium.
25. The method of Claim 20 further comprising providing light source that emits the first wavelength and a second wavelength that are harmonically related.

26. The method of Claim 20 further comprising providing a first low coherence light source and a second low coherence light source.
27. The method of Claim 20 further comprising providing a low coherence light source and a coherent light source.
- 5 28. The method of Claim 20 wherein the second wavelength is within 5% of an integer multiple of the first wavelength.

WO 01/94913

PCT/US01/18721

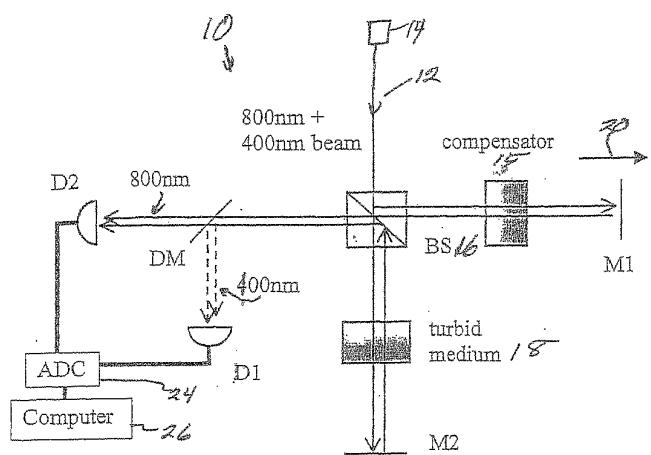


Figure 1

WO 01/94913

PCT/US01/18721

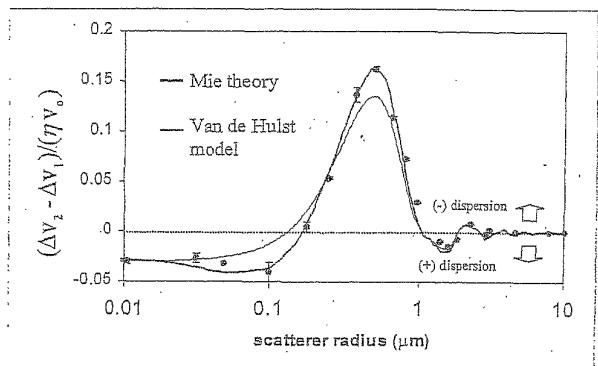


Figure 2

WO 01/94913

PCT/US01/18721

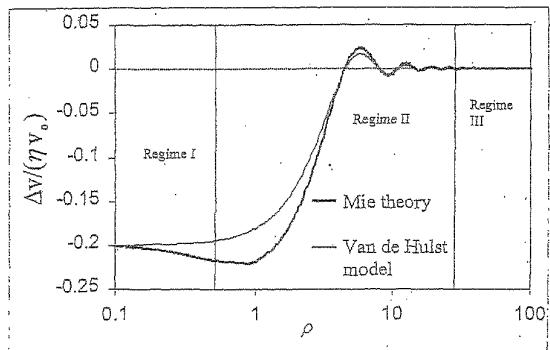


Figure 3

WO 01/94913

PCT/US01/18721

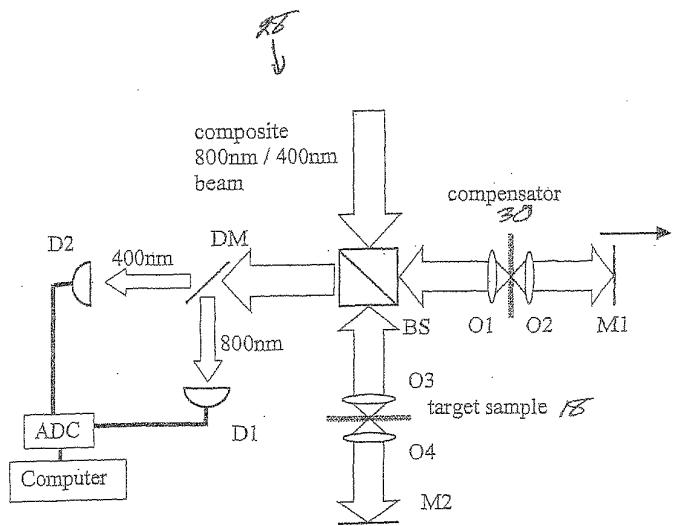


Figure 4

WO 01/94913

PCT/US01/18721

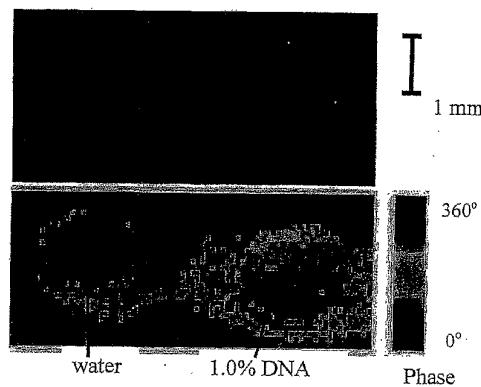


Figure 5 [REDACTED]

WO 01/94913

PCT/US01/18721

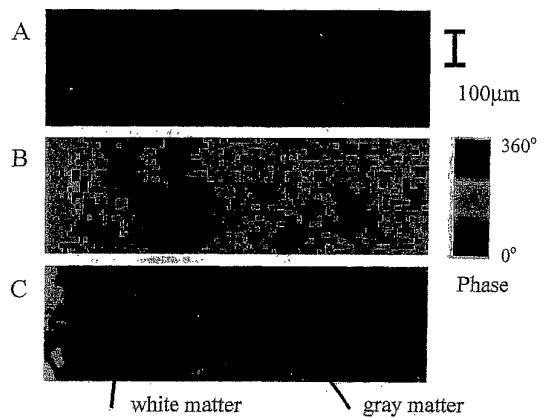


Figure [REDACTED]
6A

WO 01/94913

PCT/US01/18721

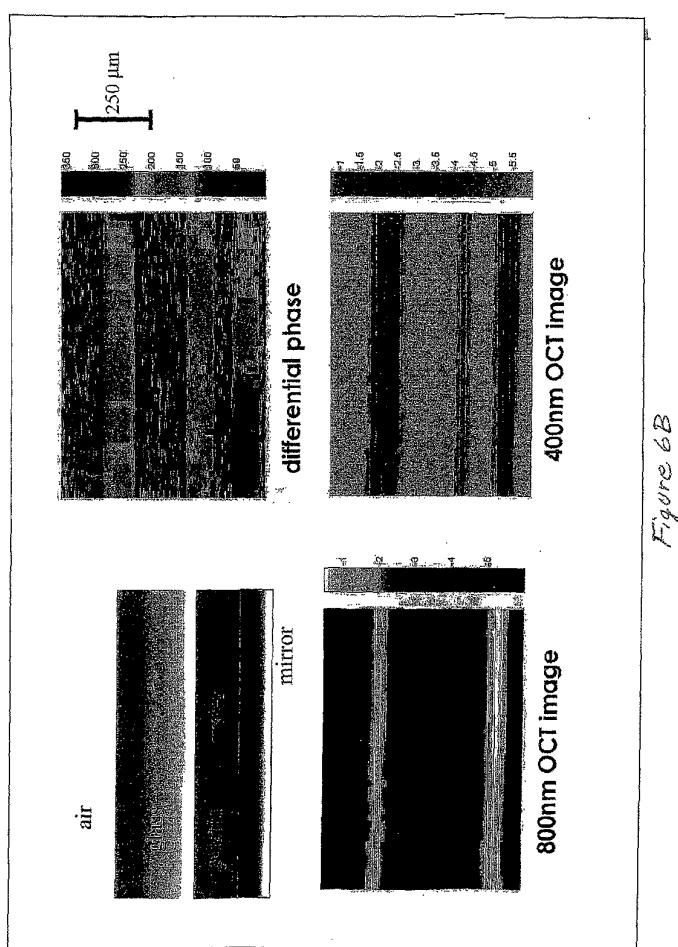


Figure 6B

WO 01/94913

PCT/US01/18721

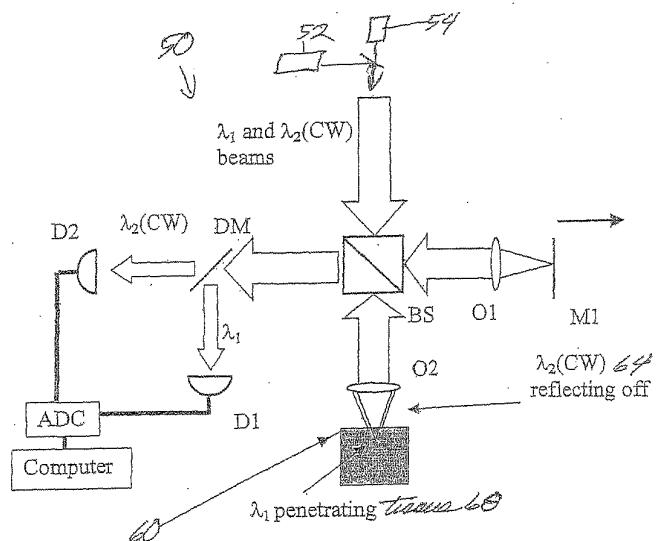


Figure 7

WO 01/94913

PCT/US01/18721

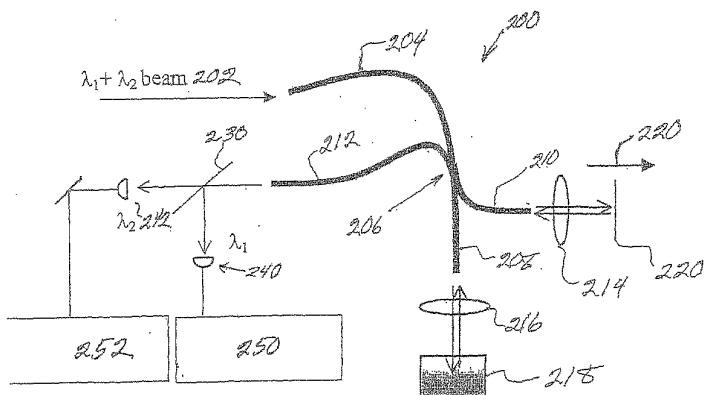


Figure 8

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
13 December 2001 (13.12.2001)

PCT

(10) International Publication Number
WO 01/94913 A3

(51) International Patent Classification: G01N 21/47, G02B 21/14, A61B 5/00

(21) International Application Number: PCT/US01/18721

(22) International Filing Date: 8 June 2001 (08.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/591,297 9 June 2000 (09.06.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:
US 09/591,297 (CIP)
Filed on 9 June 2000 (09.06.2000)

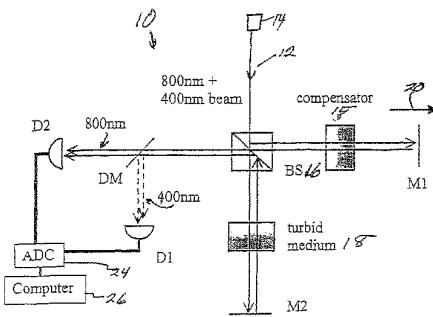
(71) Applicant (for all designated States except US): MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, MA 02139 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): YANG, Changhuei [US/US]; 136 Columbus Street, #1, Cambridge, MA 02139 (US), WAX, Adam [US/US]; 151 Tremont Street, #11T, Boston, MA 02139 (US), FELD, Michael, S. [US/US]; 56 Hinckley Road, Newton, MA 02168 (US)

(74) Agents: HOOVER, Thomas, O. et al.; Bowditch & Dewey, LLP, 161 Worcester Road, P.O. Box 9320, Framingham, MA 01701-9320 (US).

(81) Designated States (nationally): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: PHASE DISPERSIVE TOMOGRAPHY

WO 01/94913 A3

(57) Abstract: Radiation that propagates undeflected through a turbid medium, undergoes a small change in phase velocity due to its wave nature. This change can be measured using a differential phase optical interferometer. Ballistic propagation can be classified into three regimes: for scatterers small compared to the wavelength, the turbid medium acts as a bulk medium; for large scatterers, phase velocity is independent of turbidity; and in the intermediate regime, the phase velocity is strongly dependent on scatterer radius. In particular, for scatterers having intermediate size, a phase velocity increase and negative dispersion is observed by adding positive dispersion scatterers of higher refractive index. These measurements are made using the phase difference between fundamental and harmonic light and can be used to provide diagnostic information and images of tissues or biological fluids.

WO 01/94913 A3

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, (88) Date of publication of the international search report:
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). 25 April 2002

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No. PCT/US 01/18721
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01N21/47 G02B21/14 A61B5/00		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 G01N G02B A61B		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, INSPEC		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E, L	WO 01 84124 A (MASSACHUSETTS INST TECHNOLOGY ;FELD MICHAEL S (US); PERELMAN LEV T) 8 November 2001 (2001-11-08) cited in the application page 5, line 23 -page 7, line 3 page 8, line 10 - line 12 page 9, line 1 - line 2 page 13, line 18 - line 27 page 14, line 21 -page 15, line 13 ---	1-28
X	YANG C ET AL: "FEASIBILITY OF FIELD-BASED LIGHT SCATTERING SPECTROSCOPY" OFFSHORE, INDUSTRIAL PUBLICATIONS, CONROE, TX., US, vol. 5, no. 2, April 2000 (2000-04), pages 138-143, XP001051328 ISSN: 0030-0608 the whole document ---	1-28 -/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C <input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents:		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document published on or after the international filing date		
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document for other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is considered in combination with one or more other such documents, such combination being obvious to a person skilled in the art		
Date of the actual completion of the international search 5 February 2002		Date of mailing of the international search report 07/03/2002
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax. (+31-70) 340-3016		Authorized officer Scheu, M

INTERNATIONAL SEARCH REPORT		International Application No. PCT/US 01/18721
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	CHANGHUEI YANG ET AL: "Phase-dispersion optical tomography" OPTICS LETTERS, 15 MAY 2001, OPT. SOC. AMERICA, USA, vol. 26, no. 10, pages 686-688, XP002186713 ISSN: 0146-9592 the whole document ----	1-28
P,X	YANG C ET AL: "Measurement of the anomalous phase velocity of ballistic light in a random medium by use of a novel interferometer" OPTICS LETTERS, 15 FEB. 2001, OPT. SOC. AMERICA, USA, vol. 26, no. 4, pages 235-237, XP002186714 ISSN: 0146-9592 the whole document ----	1-28
P,X	CHANGHUEI YANG ET AL: "Interferometric phase-dispersion microscopy" OPTICS LETTERS, 15 OCT. 2000, OPT. SOC. AMERICA, USA, vol. 25, no. 20, pages 1526-1528, XP002186715 ISSN: 0146-9592 the whole document -----	1-28

INTERNATIONAL SEARCH REPORT			International Application No	
Information on patent family members			PCT/US 01/18721	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 0184124	A 08-11-2001	WO 0184124 A2	08-11-2001	

Form PCT/ISA/210 (patent family annex) (July 1992)

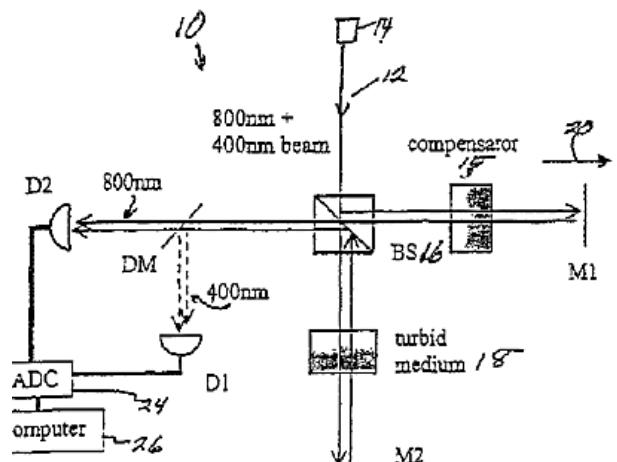
フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZW

(72)発明者 ワツクス , アダム

アメリカ合衆国マサチュセツツ州 0 2 1 3 9 ボストン・ナンバー 1 1 テイ・トレモントストリート
1 5 1

(72)発明者 フエルド , マイケル・エス


アメリカ合衆国マサチュセツツ州 0 2 1 6 8 ニュートン・ヒンクリーロード 5 6

F ターム(参考) 2G059 AA06 BB12 CC16 EE01 EE02 EE11 FF01 FF06 GG01 GG03
HH01 HH02 HH06 JJ11 JJ13 JJ17 JJ22 KK03 MM01 MM09

专利名称(译)	相位色散断层扫描		
公开(公告)号	JP2004510132A	公开(公告)日	2004-04-02
申请号	JP2002502414	申请日	2001-06-08
[标]申请(专利权)人(译)	玛莎愈合赛斯双扫描集集乌特技术的利 麻省理工学院		
申请(专利权)人(译)	Masachiyusetsutsu仪器集集乌特-的技术毅		
[标]发明人	ヤングシヤングエイ ワツクスアダム フエルドマイケルエス		
发明人	ヤング,シヤングエイ ワツクス,アダム フエルド,マイケル·エス		
IPC分类号	G01N21/17 A61B5/00 G01N15/02 G01N21/47		
CPC分类号	A61B5/0073 A61B5/0066 G01N15/0205 G01N21/4795		
FI分类号	G01N21/17.630		
F-TERM分类号	2G059/AA06 2G059/BB12 2G059/CC16 2G059/EE01 2G059/EE02 2G059/EE11 2G059/FF01 2G059/ /FF06 2G059/GG01 2G059/GG03 2G059/HH01 2G059/HH02 2G059/HH06 2G059/JJ11 2G059/JJ13 2G059/JJ17 2G059/JJ22 2G059/KK03 2G059/MM01 2G059/MM09		
优先权	09/591297 2000-06-09 US		
外部链接	Espacenet		

摘要(译)

传播而不被折射通过混浊介质的辐射由于其波性质而经历轻微的相位速度变化。这种变化可以使用差分相位光学干涉仪来测量。弹道传播情况被分类为三种情况（制度），即具有小的被动散射比波长用作散装介质的情况该混混浊介质，在大的无源散射相位速度独立于所述混浊，以及在中间情况下相速度强烈依赖于散射体半径的情况。特别地，对于具有中间尺寸的散射体，具有较高折射率的正色散散射体（正色散）通过添加散射体，相速度增加并且观察到负色散。这些测量使用基波和谐波之间的相位差进行，并且可以用于提供组织或生物流体的诊断信息和图像。

